A.A.:
$$R_{0}R_{4}|_{0...07} = sin(\theta(172))|_{172} + cos(\theta(172))|_{172} +$$

7. Qubitization: Quantum Signal Proessing

Isaac H. Kim (UC Davis)

Overview

• LCU

- * Taylor expansion \rightarrow Linear combination of unitary (Paulis)
- * SELECT: Selects the Pauli in the Taylor expansion
- * PREPARE: Encodes coefficients in the Taylor expansion
- Qubitization is an upgraded version of LCU, but it is more flexible and efficient.

High-level overview of Qubitization

Why Qubitization?

- The best state-of-the-art quantum algorithms for quantum chemistry is based on qubitization, in one form or another.
- Improvements are made in more efficient constructions of SELECT and PREPARE, but the framework of qubitization lives on.
- If you view SELECT and PREPARE as black boxes, qubitization is optimal, and even the constants are reasonable.

Why Qubitization?

Year	Reference	Primary algorithmic innovation	Space complexity	Toffoli/T complexity
2005	Aspuru-Guzik et al. [4]	First algorithm (no compilation or bounds)	$\mathcal{O}(N)$	$\mathcal{O}(\mathrm{poly}(N/\epsilon))$
2010	Whitfield et al. [11]	First compilation (no Trotter bounds)	$\mathcal{O}(N)$	$\mathcal{O}(\mathrm{poly}(N/\epsilon))$
2012	Seeley et al. [41]	Use of Bravyi-Kitaev transformation	$\mathcal{O}(N)$	$\mathcal{O}(\mathrm{poly}(N/\epsilon))$
2013	Wecker et al. [42]	First chemistry specific Trotter bounds	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(N^{10}/\epsilon^{3/2})$
2013	Toloui et al. [43]	Use of first quantization	$\mathcal{O}(\eta \log N)$	$\widetilde{\mathcal{O}}(\eta^2 N^8/\epsilon^{3/2})$
2014	Hastings et al. [44]	Better compilation and multi-resolution Trotter	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(N^8/\epsilon^{3/2})$
2014	Poulin et al. [45]	Tighter Trotter bounds and ordering	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(N^6/\epsilon^{3/2})$
2014	McClean et al. [25]	Exploiting Hamiltonian sparsity with Trotter	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(N^4S/\epsilon^{3/2})$
2014	Babbush et al. [46]	Tighter system specific Trotter bounds	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(N^2S/\epsilon^{3/2})$
2015	Babbush et al. [47]	Use of Taylor series (database method)	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(N^4\lambda_V/\epsilon)$
2015	Babbush et al. [47]	Use of Taylor series (on-the-fly method)	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(N^5/\epsilon)$
2015	Babbush et al. [48]	Use of Taylor series with first quantization	$\mathcal{O}(\eta \log N)$	$\widetilde{\mathcal{O}}(\eta^2 N^3/\epsilon)$
2016	Reiher et al. [23]	First T count and tighter Trotter bounds	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(N^2S/\epsilon^{3/2})$
2018	Motta et al. [29]	Use of low rank factorization with Trotter	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(N^4\Xi/\epsilon^{3/2})$
2018	Campbell [49]	Use of randomized compiling with Trotter	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(\lambda_V^2/\epsilon^2)$
2019	Berry et al. [9]	Use of qubitization (sparse method)	$\widetilde{\mathcal{O}}(N+\sqrt{S})$	$\widetilde{\mathcal{O}}((N+\sqrt{S})\lambda_V/\epsilon)$
2019	Berry et al. [9]	Use of qubitization (single factorization)	$\widetilde{\mathcal{O}}(N^{3/2})$	$\widetilde{\mathcal{O}}(N^{3/2}\lambda_{ m SF}/\epsilon)$
2019	Kivlichan et al. [50]	Better randomized compiled phase estimation	$\mathcal{O}(N)$	$\widetilde{\mathcal{O}}(\lambda_V^2/\epsilon^2)$
2020	von Burg et al. [10]	Use of qubitization (double factorization)	$\widetilde{O}(N\sqrt{\Xi})$	$\widetilde{\mathcal{O}}(N\lambda_{\mathrm{DF}}\sqrt{\Xi}/\epsilon)$
2020	Present work	Use of tensor hypercontraction	$\widetilde{\mathcal{O}}(N)$	$\widetilde{\mathcal{O}}(N\lambda_{\zeta}/\epsilon)$

4 Quilitization

• From Lee et al., PRX Quantum 2, 030305 (2021).

Why Qubitization?

- Qubitization is also **flexible**. While Hamiltonian simulation is one of its most important applications, it can also do other things.
- For instance, you can apply $e^{i \cos^{-1}(H/||H||)}$. This may seem very obscure, but this is actually a very useful thing to do. (We'll talk about that next week.)

- The precursor to qubitization is Quantum Signal Processing (QSP) [Low, Yoder, and Chuang (2016), Low and Chuang (2016)]
- Physical model: Always-on magnetic field in one direction + instantaneous pulses

- The precursor to qubitization is Quantum Signal Processing (QSP)
- Physical model: Always-on magnetic field in one direction + instantaneous pulses

$$\frac{d + (\nabla w' d \Psi e \ rry \Psi}{e^{i\phi_0 Z} e^{i\theta X} e^{i\phi_1 Z} \cdots e^{i\theta X} e^{i\phi_d Z}} = \begin{bmatrix} P(a) & iQ(a)\sqrt{1-a^2} \\ iQ(a)\sqrt{1-a^2} \\ P^*(a) \end{bmatrix},$$

where $\theta = \cos^{-1}(a)$ and $\alpha = \cos \theta$
1. Degrees of P and Q are at most d and d-1, respectively.
2. P, Q has parity d and (d-1) mod 2.
3. $|P|^2 + (1-a^2) |Q|^2 = 1.$

*e^{iox} = I coro f ising X

- The precursor to qubitization is Quantum Signal Processing (QSP)
- Physical model: Always-on magnetic field in one direction + instantaneous pulses

where
$$\theta = \cos^{-1}(a)$$
.
1. Degrees of P and Q are at most d and d-1, respectively.
2. P, Q has parity d and (d-1) mod 2.
3. $|P|^2 + (1 - a^2) |Q|^2 = 1$.
 $e^{i\phi_0 Z} e^{i\theta X} e^{i\phi_1 Z} \simeq \begin{pmatrix} e^{\lambda \left(\frac{a}{2} - \theta\right)} & \lambda \sqrt{1 - \eta^2} & e^{-\lambda \left(\frac{a}{2} - \theta\right)} \\ \phi & e^{-\lambda \left(\frac{a}{2} - \theta\right)} & \lambda \sqrt{1 - \eta^2} & e^{-\lambda \left(\frac{a}{2} - \theta\right)} \end{pmatrix}$

- The precursor to qubitization is Quantum Signal Processing (QSP)
- Physical model: Always-on magnetic field in one direction + instantaneous pulses

Recursion

$$e^{i\phi_0 Z} e^{i\theta X} e^{i\phi_1 Z} \cdots e^{i\theta X} e^{i\phi_d Z} = \begin{bmatrix} P(a) & iQ(a)\sqrt{1-a^2} \\ iQ^*(a)\sqrt{1-a^2} & P^*(a) \end{bmatrix},$$

where $\theta = \cos^{-1}(a)$ and

1. Degrees of P and Q are at most d and d-1, respectively.

2. P, Q has parity d and (d-1) mod 2.
3.
$$|P|^2 + (1 - a^2) |Q|^2 = 1$$
.
 $degree = ditd_2$
 $q_1 = d_1$
 $q_2 = d_1 = d_2$
 $deg(P_1Q_2 + Q_1Q_1^*) = d_1 + d_2 = 1$
 $deg(P_1Q_2 + Q_1Q_1^*) = d_1 + d_2 = 1$
 $deg(P_1Q_2 + Q_1Q_1^*) = d_1 + d_2 = 1$
 $deg(P_1Q_2 + Q_1Q_1^*) = d_1 + d_2 = 1$
 $deg(P_1Q_2 + Q_1Q_1^*) = d_1 + d_2 = 1$

A remarkable fact: Converse is true!

• For any

$$\begin{bmatrix} P(a) & iQ(a)\sqrt{1-a^2} \\ iQ^*(a)\sqrt{1-a^2} & P^*(a) \end{bmatrix},$$

where $\theta = \cos^{-1}(a)$ and

An analogy

Recap

- Quantum Signal Processing: A flexible framework to synthesize an arbitrary element of SU(2) by an always-on magnetic field and a sequence of variable "pulses."
- This is just about a qubit, but the lesson extends more generally. Let's talk about that in the next lecture.